Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 9.525
Filtrar
1.
Sci Rep ; 14(1): 7962, 2024 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-38575628

RESUMO

The underlying study was carried out aiming at transdermal drug delivery (TDD) of Goniothalamus macrophyllus as sono-photo-sensitizer (SPS) using microneedle (MN) arrays with iontophoresis (MN-IP), electroporation (MN-EP) in conjunction with applying photodynamic therapy (PDT), sonodynamic therapy (SDT) and sono-photodynamic therapy (SPDT) as an up-to-date activated cancer treatment modality. Study was conducted on 120 male Swiss Albino mice, inoculated with Ehrlich ascites carcinoma (EAC) divided into 9 groups. We employed three different arrays of MN electrodes were used (parallel, triangular, and circular), EP, IP with different volts (6, 9, 12 V), an infrared laser and an ultrasound (pulsed and continuous wave) as our two energy sources. Results revealed that parallel 6 V TDD@MN@IP@EP can be used as effective delivery system for G. macrophyllus from skin directly to target EAC cells. In addition MN@IP@EP@TDD G. macrophyllus is a potential SPS for SPDT treatment of EAC. With respect to normal control mice and as opposed to the EAC untreated control mice, MN@EP@IP TDD G. macrophyllus in the laser, ultrasound, and combination activated groups showed a significant increase in the antioxidant markers TAC level and the GST, GR, Catalase, and SOD activities, while decrease in lipid peroxidation oxidative stress parameter MDA levels. In addition significantly increased apoptotic genes expressions (p53, caspase (3, 9), Bax, and TNF alpha) and on the other hand decreased anti- apoptotic (Bcl-2) and angiogenic (VEGF) genes expressions. Moreover significantly ameliorate liver and kidney function decreasing ALT, AST, urea and creatinine respectively. Furthermore MN@IP@EP@TDD G. macrophyllus combined with SPDT was very effective at reducing the growth of tumors and even causing cell death according to microscopic H&E stain results. This process may be related to a sono- and/or photochemical activation mechanism. According to the findings, MN@IP@EP@TDD G. macrophyllus has a lot of potential as a novel, efficient delivery method that in combination with infrared laser and ultrasound activation SPDT demonstrated promising anticancer impact for treating cancer.


Assuntos
Carcinoma , Goniothalamus , Masculino , Animais , Camundongos , Iontoforese , Administração Cutânea , Pele/metabolismo , Eletroporação/métodos , Carcinoma/metabolismo
2.
J Cancer Res Ther ; 20(1): 479-481, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38554370

RESUMO

NUT midline carcinoma (NMC) is an aggressive malignant neoplasm arising from midline structures. Although it is classified as a rare disease, the pathological nonspecific appearance as undifferentiated/poorly differentiated carcinoma and the difficulty in making the definitive diagnosis are probably the reasons for the underdiagnosis; the disease is thought to be more prevalent. There is no standard treatment for the disease. The disease shows a poor response to chemotherapy and radiotherapy, and patients' survival is poor. We present a case of sinonasal NMC treated with chemotherapy and immunotherapy in first-line, which is the first in the literature. The patient presented with metastatic disease and received cisplatin-fluorouracil-docetaxel-pembrolizumab treatment. The tumor's PD-L1 expression was 10%, evaluated by tumor proportion score. The response to the therapy was poor, and the patient died of disease progression 5.4 months after the diagnosis. The efficacy of immunotherapy in NMC is not known. More reports are needed to draw conclusions.


Assuntos
Carcinoma , Neoplasias Epiteliais e Glandulares , Humanos , Carcinoma/genética , Carcinoma/terapia , Carcinoma/metabolismo , Docetaxel , Imunoterapia
3.
Sensors (Basel) ; 24(4)2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38400284

RESUMO

Prostate cancer (PCa) is the second most common cancer. In this paper, the isolation and properties of exosomes as potential novel liquid biopsy markers for early PCa liquid biopsy diagnosis are investigated using two prostate human cell lines, i.e., benign (control) cell line RWPE1 and carcinoma cell line 22Rv1. Exosomes produced by both cell lines are characterised by various methods including nanoparticle-tracking analysis, dynamic light scattering, scanning electron microscopy and atomic force microscopy. In addition, surface plasmon resonance (SPR) is used to study three different receptors on the exosomal surface (CD63, CD81 and prostate-specific membrane antigen-PMSA), implementing monoclonal antibodies and identifying the type of glycans present on the surface of exosomes using lectins (glycan-recognising proteins). Electrochemical analysis is used to understand the interfacial properties of exosomes. The results indicate that cancerous exosomes are smaller, are produced at higher concentrations, and exhibit more nega tive zeta potential than the control exosomes. The SPR experiments confirm that negatively charged α-2,3- and α-2,6-sialic acid-containing glycans are found in greater abundance on carcinoma exosomes, whereas bisecting and branched glycans are more abundant in the control exosomes. The SPR results also show that a sandwich antibody/exosomes/lectins configuration could be constructed for effective glycoprofiling of exosomes as a novel liquid biopsy marker.


Assuntos
Carcinoma , Exossomos , Masculino , Humanos , Exossomos/química , Biópsia Líquida , Carcinoma/metabolismo , Carcinoma/patologia , Lectinas/análise , Lectinas/metabolismo , Polissacarídeos/análise , Polissacarídeos/metabolismo
4.
Front Immunol ; 15: 1287632, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38343544

RESUMO

Objective: Colorectal cancer (CRC) is the third most prevalent cancer worldwide and is associated with high morbidity and mortality rates. Colorectal carcinogenesis occurs via the conventional adenoma-to-carcinoma and serrated pathways. Conventional T helper (Th) and innate lymphoid cells (ILCs) play vital roles in maintaining intestinal homeostasis. However, the contribution of these two major lymphoid cell populations and their associated cytokines to CRC development is unclear. Therefore, we aimed to analyze peripheral lymphocyte profiles during colorectal carcinogenesis. Methods: We collected 86 blood samples concurrently, and pathologists confirmed the presence of various pathological conditions (i.e., HPs, adenoma, and carcinoma) using hematoxylin and eosin staining. Ten healthy donors were recruited as healthy controls (HCs) from the physical examination center. We performed flow cytometry on peripheral blood mononuclear cells collected from patients with various pathological conditions and the HCs, and cytokines (interleukin-2, interleukin-4, interleukin-5, interleukin-13, interleukin-17A, interleukin-17F, interleukin-22, interferon-γ, and tumor necrosis factor-α) were quantified. We also analyzed the published single-cell RNA sequence data derived from tissue samples from different stages of colorectal carcinogenesis. Results: The cytokine response in peripheral CD4+ T cells was upregulated during the carcinoma process. The frequency of peripheral regulatory T cells (Tregs) increased in the adenoma and carcinoma stages. While the T follicular helper (Tfh) cell proportion was downregulated in the adenoma and carcinoma processes. Thus, Th cell subsets, especially Tregs and Tfh cells, were involved in colonic diseases. Moreover, the immunological profile characteristics in the HPs were clarified. Conclusion: We comprehensively analyzed circulating ILCs and adaptive T-cell lymphocyte subtypes in colorectal carcinoma progression. Our results show the immunological profile characteristics and support the involvement of Th subsets, especially Treg and Tfh cell populations, in colonic diseases. These findings significantly enhance our understanding of the immune mechanisms underlying CRC and its precancerous lesions. Further investigation of the Treg and Tfh cells' function in colorectal disease development will provide potential therapeutic targets for monitoring and preventing CRC development.


Assuntos
Adenoma , Carcinoma , Doenças do Colo , Neoplasias Colorretais , Humanos , Linfócitos T Reguladores/patologia , Leucócitos Mononucleares/patologia , Imunidade Inata , Linfócitos/patologia , Linfócitos T Auxiliares-Indutores , Citocinas/metabolismo , Neoplasias Colorretais/patologia , Doenças do Colo/metabolismo , Carcinoma/metabolismo , Carcinogênese/metabolismo , Adenoma/metabolismo
5.
Vascul Pharmacol ; 154: 107276, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38242295

RESUMO

INTRODUCTION: Cancer needs perfusion for its growth and metastasis. Cancer cell-derived extracellular vesicles (CA-EVs) alter the tumor microenvironment (TME), potentially promoting angiogenesis. We hypothesize that conditions in the tumor, e.g., hypoxia, and in the target cells of the TME, e.g., nutrient deprivation or extracellular matrix, can affect the angiogenic potential of CA-EVs, which would contribute to explaining the regulation of tumor vascularization and its influence on cancer growth and metastasis. METHODS: CA-EVs were isolated and characterized from cervical carcinoma cell lines HeLa and SiHa cultured under normoxia and hypoxia, and their angiogenic potential was evaluated in vitro in three endothelial cells (ECs) lines and aortic rings, cultured in basal (growth factor-reduced) or complete medium. RESULTS: Hypoxia increased EV production 10-100 times and protein content 2-4 times compared to normoxic CA-EVs. HeLa-EVs contained six times more RNA than SiHa-EVs, and this concentration was not affected by hypoxia. Treatment with CA-EVs increased tube formation and sprouting in ECs and aortic rings cultured in basal medium and long-term stabilized the stablished vascular networks formed by ECs cultured in complete medium. CONCLUSION: Hypoxia differentially affects CA-EVs in a cell line-dependent manner. The cellular environment (nutrient availability and extracellular matrix scaffold) influences the effect of CA-EV on the angiogenic potential of ECs.


Assuntos
Carcinoma , Vesículas Extracelulares , Humanos , Células Endoteliais/metabolismo , 60489 , Vesículas Extracelulares/metabolismo , Carcinoma/metabolismo , Carcinoma/patologia , Hipóxia/metabolismo , Microambiente Tumoral
6.
BMC Complement Med Ther ; 24(1): 8, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38166796

RESUMO

BACKGROUND: 6-Gingerol (6-G) is the primary active phytocomponent of ginger and has been shown to regulate multiple targets against cancer and its treatment. Androgen receptors (ARs) remain critical in the progression of prostate cancer (PCa). This study focuses on investigating 6-G as a promising anti-cancerous agent that inhibits AR activity significantly. METHODS: In this study, molecular docking simulation was done to investigate the binding affinity of 6-G and control drug Bicalutamide (BT) against oncogenic AR and tumor suppressor estrogen receptor ß (ERß). The crystal structure of AR and ERß was retrieved from Protein Data Bank (PDB) and docked with 3D Pubchem structures of 6-G using iGEMDOCK and AutoDock. Further in vitro study was done to evaluate the antioxidant, anti-cancerous, apoptotic, and wound healing potential of 6-G. RESULTS: The result displays that 6-G shows good binding affinity with AR and ERß. Condensation of the nucleus, change in mitochondrial membrane potential (MMP) and the ability to induce reactive oxygen species (ROS) were done in human PCa PC-3 cells. Results from the MTT assay demonstrated that 6-G and control drug BT showed significant (p < 0.01) dose and time dependent inhibition of human PCa PC-3 cells. 6-G increased the ROS generation intracellularly and decreased the MMP, and cell migration in treated PCa PC-3 cells. 6-G treated cells showed fragmented, condensed chromatin and nuclear apoptotic bodies. CONCLUSIONS: Thus, this study validates 6-G as a potential drug candidate against human PCa. However, further study of the anticancer potency of 6-G has to be done before its use for PCa treatment.


Assuntos
Carcinoma , Neoplasias da Próstata , Masculino , Humanos , Próstata , Receptor beta de Estrogênio/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Simulação de Acoplamento Molecular , Linhagem Celular Tumoral , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/metabolismo , Carcinoma/metabolismo
7.
Dalton Trans ; 53(5): 1977-1988, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38205595

RESUMO

Most platinum group-based cyclometalated neutral and cationic anticancer complexes with the general formula [(C^N)2Ir(XY)]0/+ (neutral complex: XY = bidentate anionic ligand; cationic complex: XY = bidentate neutral ligand) are notable owing to their intrinsic luminescence properties, good cell permeability, interaction with some biomolecular targets and unique mechanisms of action (MoAs). We herein synthesized a series of neutral and cationic amine-imine cyclometalated iridium(III) complexes using Schiff base ligands with sp2-N/sp3-N N^NH2 chelating donors. The cyclometalated iridium(III) complexes were identified by various techniques. They were stable in aqueous media, displayed moderate fluorescence and exhibited affinity toward bovine serum albumin (BSA). The complexes demonstrated promising cytotoxicity against lung cancer A549 cells, cisplatin-resistant lung cancer A549/DDP cells, cervical carcinoma HeLa cells and human liver carcinoma HepG2 cells, with IC50 values ranging from 9.98 to 19.63 µM. Unfortunately, these complexes had a low selectivity (selectivity index: 1.62-1.98) towards A549 cells and BEAS-2B normal cells. The charge pattern of the metal center (neutral or cationic) and ligand substituents showed little influence on the cytotoxicity and selectivity of these complexes. The study revealed that these complexes could target mitochondria, cause depolarization of the mitochondrial membrane, and trigger the production of intracellular ROS. Additionally, the complexes were observed to induce late apoptosis and perturb the cell cycle in the G2/M or S phase in A549 cells. Based on these results, it appears that the anticancer efficacy of these complexes was predominantly attributed to the redox mechanism.


Assuntos
Antineoplásicos , Carcinoma , Complexos de Coordenação , Neoplasias Pulmonares , Humanos , Antineoplásicos/farmacologia , Antineoplásicos/metabolismo , Células HeLa , Irídio/farmacologia , Complexos de Coordenação/farmacologia , Complexos de Coordenação/metabolismo , Ligantes , Quelantes/farmacologia , Mitocôndrias/metabolismo , Neoplasias Pulmonares/metabolismo , Carcinoma/metabolismo , Apoptose , Linhagem Celular Tumoral
8.
Chem Biol Interact ; 387: 110796, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-37951333

RESUMO

Angiogenesis is considered one of the hallmarks of cancer, assisting tumor progression and metastasis. The mesoionic compound, MI-D, can induce cell death and provoke cytoskeletal and metabolic changes in cancer cells. Using in vitro and in vivo models, this study aimed to evaluate the effects of MI-D on the viability of human endothelial cells (EC) and its ability to inhibit tumor-induced angiogenesis induced by tumoral cells. For in vitro analysis, colon carcinoma (HT29) and endothelial (EA.hy926) cells were used as the tumoral and angiogenesis models, respectively. To evaluate cytotoxicity, methylene blue viability stain and annexin-V/7AAD tests were performed with both cell types. For the angiogenesis experiments, scratch wound healing and capillary tube-like formation assays were performed with the EC. The in vivo tests were performed with the chorioallantoic membrane (HET-CAM) methodology, wherein gelatin sponge implants containing MI-D (5, 25, and 50 µM), HT29 cells, or both were grafted in the CAM. Our data showed that MI-D induced apoptosis in both endothelial and colon carcinoma cells, with a strong cytotoxic effect on the tumoral lineage. The drug inhibited the EC's migration and capillary-like structure formation in vitro. In the HET-CAM assays, MI-D reduced the number of blood vessels in the membrane when grafted alone and accompanied by tumor cells. In this study, MI-D interfered in important steps of angiogenesis, such as maintenance of endothelial cell viability, migration, formation of capillary-like structures, as well tumor-induced neovascularization, reinforcing the hypothesis that MI-D might act as an inhibitor of angiogenesis, and a potential antitumor agent.


Assuntos
Antineoplásicos , Carcinoma , Humanos , Células Endoteliais , Inibidores da Angiogênese/farmacologia , Inibidores da Angiogênese/uso terapêutico , Movimento Celular , Neovascularização Patológica/tratamento farmacológico , Neovascularização Patológica/metabolismo , Antineoplásicos/uso terapêutico , Carcinoma/metabolismo , Células Endoteliais da Veia Umbilical Humana , Proliferação de Células
9.
Biochem Biophys Res Commun ; 691: 149336, 2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38039834

RESUMO

Mammary gland tumors (MGT) are the most common tumors in sexually intact female dogs. The functional regulation of miRNAs, a type of noncoding RNAs (ncRNAs), in canine MGT has been extensively investigated. However, the expression of other ncRNAs, such as YRNAs and transfer RNA-derived fragments (tRFs) in canine MGT is unknown. We investigated ncRNAs other than miRNAs from our small RNA project (PRJNA716131) in different canine MGT histologic subtypes. This study included benign tumors (benign mixed tumor, complex adenoma) and malignant tumors (carcinoma in benign tumor and carcinoma with metastasis) samples. Aberrantly expressed ncRNAs were examined by comparisons among MGT subtypes. The relative expression trends were validated in canine MGT tissues, plasma, extracellular vesicles, and MGT cell lines using quantitative reverse transcription PCR. Three aberrantly expressed ncRNAs were identified by comparisons among MGT subtypes. YRNA and tRNA-Gly-GCC distinguished benign mixed tumor from other MGT histologic subtypes, while tRNA-Val differentiated complex adenoma, carcinoma in benign tumors, and carcinoma with metastasis. The ROC curve of the three ncRNAs showed they might be potential biomarkers to discriminate malignant from benign MGT. YRNA and tRFs expression levels were decreased in metastatic compared with primary canine MGT cell lines. To the best of our knowledge, this is the first investigation of YRNA and tRFs in canine MGT. The three identified ncRNAs may be biomarkers for differentiating MGT histologic subtypes. Suggested Reviewers: Powered by Editorial Manager® and ProduXion Manager® from Aries Systems Corporatio.


Assuntos
Adenoma , Carcinoma , Neoplasias Mamárias Animais , MicroRNAs , Cães , Animais , Feminino , Biomarcadores , Carcinoma/metabolismo , RNA de Transferência/genética , Adenoma/diagnóstico , Adenoma/genética , Adenoma/veterinária , Neoplasias Mamárias Animais/diagnóstico , Neoplasias Mamárias Animais/genética , Neoplasias Mamárias Animais/metabolismo
10.
Appl Immunohistochem Mol Morphol ; 32(2): 64-70, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-37972936

RESUMO

The immunodetection of NUT protein is a reliable tool to identify NUT carcinoma, a rare and still underdiagnosed tumor entity. The technique was implemented in 2017 in our department, a tertiary reference center with a large recruitment in all tumor types, including head and neck and thoracic tumors. We evaluated its use over a 6-year period (2017-2022) to (a) describe the indications for the technique, (b) determine the number of NUT carcinomas detected and confirmed by Fluorescence in situ hybridization, and (c) describe briefly the characteristics of these tumors. Over the study period, 382 NUT immunodetections were performed; the annual number of requests varied from 45 to 83. All 21 pathologists of the department made at least one request (range: 1 to 94; annual mean: 18.2). 54.7% of immunodetections were performed for internal cases, 37% for cases submitted for consultation, and 8.3% for cases submitted for confirmation of a suspected diagnosis. The main indications were poorly differentiated tumors of the head and neck region (39%) and the thorax (19.6%), and difficult-to-classify soft tissue tumors (11.8%). Twelve cases of NUT carcinoma were detected by immunohistochemistry and confirmed by Fluorescence in situ hybridization. Seven were from the head and neck region (4.7% of the tumors tested), 4 from lung or mediastinum (5.3%), 1 from an unknown primary at the time of diagnosis. In conclusion, the implementation of NUT immunodetection in the daily workflow of a pathology department improves the detection of NUT carcinoma. This becomes essential with the emergence of potential targeted therapies.


Assuntos
Carcinoma , Proteínas de Nozes , Humanos , Proteínas de Neoplasias/genética , Proteínas Oncogênicas , Hibridização in Situ Fluorescente , Proteínas Nucleares/genética , Carcinoma/metabolismo
11.
J Immunoassay Immunochem ; 45(1): 50-72, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38031398

RESUMO

In view of multiplicity of carcinogenic pathways of gastric carcinoma (GC), poor survival and chemotherapy resistance, more analysis of these pathways is required for prediction of prognosis and developing new therapeutic targets. Knocking down of RORα; induces tumor cell proliferation and epithelial-mesenchymal transition (EMT). LAPTM4B has been suggested to be associated with EMT which promote tumor invasion. This work aimed to investigate prognostic role of RORα, LAPTM4B, and E-Cadherin expression in GC. This retrospective immunohistochemical study assesses the expression of RORα, LAPTM4B, and E-Cadherin in 73 primary gastric carcinomas. Low RORα and high LAPTM4B expression in GC cases were associated with unfavorable prognostic factors such as positive lymph nodes, and high tumor budding. E-Cadherin heterogeneous staining was associated with poor prognostic criteria, such as diffuse type GC and high tumor budding. Low RORα, high LAPTM4B, and heterogeneous E-Cadherin were the most common immunohistochemical profile in GC cases. Low RORα expression showed poor prognostic impact on overall patient survival. In conclusion, RORα and LAPTM4B may have crucial role in GC aggressiveness. The predominance of low RORα, high LAPTM4B, and heterogeneous or negative E-Cadherin immunohistochemical profile in GC cases with unfavorable pathological parameters suggested that this profile may predict tumor behavior.


Assuntos
Carcinoma , Neoplasias Gástricas , Humanos , Estudos Retrospectivos , Egito , Prognóstico , Neoplasias Gástricas/diagnóstico , Neoplasias Gástricas/metabolismo , Caderinas/metabolismo , Carcinoma/metabolismo , Biomarcadores Tumorais/análise , Proteínas de Membrana , Proteínas Oncogênicas
12.
Am J Physiol Cell Physiol ; 326(1): C60-C73, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38009194

RESUMO

Radiotherapy has long been a main treatment option for nasopharyngeal carcinoma (NPC). However, during clinical treatment, NPC is prone to developing radioresistance, resulting in treatment failure. This study aims to examine the role of histone methylation in the induction of radioresistance. It was found that the radioresistance of NPC cells was related to the increase of the level of histone H3 lysine 27 trimethylation (H3K27me3). Treatment of cells with histone methyltransferase inhibitor GSK126 increased the radiosensitivity of NPC cells by triggering Bcl2 apoptosis regulator/BCL2-associated X, apoptosis regulator (Bcl2/BAX) signaling pathway. Bioinformatics analysis indicated that the expression of 2'-5'-oligoadenylate synthetase 1 (OAS1) was reduced in the radioresistant cells but increased in the GSK126-treated cells. Chromatin immunoprecipitation assay confirmed that the decrease of OAS1 expression in radioresistant cells was mainly due to the enrichment of H3K27me3 in its promoter region. Furthermore, downregulation of OAS1 reduced apoptosis due to the inhibition of Bcl2/BAX pathway after irradiation, while OAS1 overexpression increased radiosensitivity. Our findings revealed for the first time that the increase of H3K27me3 level was associated with the decrease of OAS1 expression, leading to the inhibition of apoptosis and ultimately contributing to the radioresistance of NPC cells. Moreover, the histone methyltransferase inhibitor GSK126 could overcome the radioresistance and thus might be a potential therapeutic strategy for NPC.NEW & NOTEWORTHY Our findings revealed for the first time that the increase of H3K27me3 level was associated with the decrease of OAS1 expression, leading to the inhibition of apoptosis and ultimately contributing to the radioresistance of NPC cells. Moreover, we demonstrated that the histone methyltransferase inhibitor GSK126 could be a promising therapeutic strategy for NPC by overcoming radioresistance, providing valuable insights into the clinical treatment of NPC.


Assuntos
Carcinoma , Neoplasias Nasofaríngeas , Humanos , Carcinoma Nasofaríngeo/genética , Carcinoma Nasofaríngeo/radioterapia , Histonas/genética , Histonas/metabolismo , Carcinoma/metabolismo , Neoplasias Nasofaríngeas/tratamento farmacológico , Neoplasias Nasofaríngeas/genética , Neoplasias Nasofaríngeas/radioterapia , Proteína X Associada a bcl-2/genética , Proteína X Associada a bcl-2/metabolismo , Histona Metiltransferases/metabolismo , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , 2',5'-Oligoadenilato Sintetase/metabolismo
13.
Toxicol In Vitro ; 95: 105756, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38061603

RESUMO

Betulinic acid (BA), a natural pentacyclic triterpene, was extracted from the white birch tree, Triphyophyllum peltatum and the jujube tree. In a variety of human cancer cell lines, this substance displays anticancer properties. In this study, we examined how BA works to inhibit human laryngeal cancer growth. We discovered that BA minimally exhibited cytotoxicity in normal cells (human normal cell line GES-1), while remarkably inhibiting viability of AMC-HN-8, TU212, HEp-2 and M4e cells in a concentration-dependent manner. In AMC-HN-8 cancer cells, BA induced apoptosis, activated caspase-3/9/PARP, significantly reduced mitochondrial membrane potential (MMP), increased the expression of cytochrome C in the cytoplasm, transported Bax to the mitochondria, increased the production of reactive oxygen species (ROS), and the ROS scavenger N-acetylcysteine can reduce apoptosis. All data showed that BA triggered apoptosis via the mitochondrial pathway, in which ROS production was likely involved. The findings support the development of BA as a viable drug for the treatment of human laryngeal carcinoma.


Assuntos
Carcinoma , Neoplasias Laríngeas , Triterpenos , Humanos , Espécies Reativas de Oxigênio/metabolismo , Triterpenos Pentacíclicos/metabolismo , Ácido Betulínico , Neoplasias Laríngeas/tratamento farmacológico , Linhagem Celular Tumoral , Triterpenos/farmacologia , Apoptose , Mitocôndrias/metabolismo , Proliferação de Células , Carcinoma/tratamento farmacológico , Carcinoma/metabolismo
14.
Biotechnol Bioeng ; 121(1): 380-394, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37822194

RESUMO

Physical characteristics of solid tumors such as dense internal microarchitectures and pathological stiffness influence cancer progression and treatment. While it is routine to engineer culture substrates and scaffolds with elastic moduli that approximate tumors, these models often fail to capture characteristic internal microarchitectures such as densely compacted concentric ECM fibers at the stromal interface. Contractile mesenchymal cells can solve this engineering challenge by deforming, contracting, and compacting extracellular matrix (ECM) hydrogels to decrease tissue volume and increase tissue density. Here we demonstrate that allowing human fibroblasts of varying origins to freely contract collagen type I-containing hydrogels co-seeded with carcinoma cell spheroids produces a tissue engineered construct with structural features that mimic dense solid tumors in vivo. Morphometry and mechanical testing were conducted in tandem with biochemical analysis of proliferation and viability to confirm that dense carcinoma constructs engineered using this approach capture relevant physical characteristics of solid carcinomas in a tractable format that preserves viability and is amenable to extended culture. The reported method is adaptable to the use of multiple mesenchymal cell types and the inclusion of fibrin in the ECM combined with seeding of endothelial cells to produce prevascularized constructs. The physical dense carcinoma constructs engineered using this approach may provide more clinically relevant venues for studying cancer pathophysiology and the challenges associated with the delivery of macromolecular drugs and cellular immunotherapies to solid tumors.


Assuntos
Carcinoma , Colágeno , Humanos , Colágeno/química , Hidrogéis/química , Células Endoteliais , Matriz Extracelular/metabolismo , Engenharia Tecidual/métodos , Carcinoma/metabolismo
15.
Cytokine ; 174: 156455, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38043142

RESUMO

BACKGROUND: Natural killer (NK) cells are one of the most crucial immune cells that mediate the antitumoral response due to their ability to immediately recognize and eliminate transformed cells. Because of their great cytotoxic activity, the function of NK cells must be robustly regulated to avoid tissue damage. Such regulation is mediated by a coordinated engagement of activating (NKp46) and inhibitory (CD158b) receptors, which tumor cells may use to escape from immunosurveillance. Also, NK cells are generally divided based on surface molecules, such as CD16 and CD56, and can be classified as CD56brightCD16- (regulatory) and CD56dimCD16+ (cytotoxic) NK cells. Here, we aimed to evaluate the frequency and phenotype of circulating NK cells in patients with advanced carcinomas, as well as their systemic cytokine/chemokine and growth factors production. METHODS: Peripheral blood was collected from 24 patients with advanced solid cancer during or after treatment and from 10 healthy donors. The frequency and the expression of activating (NKp46) and inhibitory (CD158b) molecules of CD56brightCD16- and CD56dimCD16+ NK cells were assessed by flow cytometry and the multiplex Luminex platform was used to quantify the secreted factors in peripheral blood serum. RESULTS: Cancer patients had a lower frequency of the cytotoxic CD56dim CD16+ NK cells subset in comparison with healthy controls. Also, the regulatory CD56bright CD16- NKs isolated from cancer patients exhibited a significantly lower expression of NKp46. Among 29 immunological and growth factors analyzed in the peripheral blood of oncologic patients, MCP-1, IP-10, and eotaxin, and VEGF they have presented a higher proportion. The Pearson correlation test showed that IL-12p40 positively correlates with CD56brightCD16- NK cells. We also observed a positive correlation between MCP-1 and the activating marker NKp46, as well as a negative correlation between IP-10 and TNF-α and NKp46. CD158b expression in CD56dimCD16+ was positively correlated with EGF and negatively correlated with MIP-1ß. CONCLUSIONS: Taken together, these results suggest that cancer patients present a shift towards a poorly cytotoxic and less activated NK profile which may contribute to tumor development and progression. The understanding of NK cell biology and soluble factors during tumor development could aid in the design of possible targeting therapeutic approaches.


Assuntos
Carcinoma , Citocinas , Humanos , Citocinas/metabolismo , Quimiocina CXCL10/metabolismo , Células Matadoras Naturais , Citometria de Fluxo , Carcinoma/metabolismo , Antígeno CD56/metabolismo , Receptores de IgG/metabolismo
16.
Chem Biol Drug Des ; 103(1): e14411, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38073436

RESUMO

Nasopharyngeal carcinoma (NPC) is a malignant tumor originating in the nasopharyngeal epithelium with a high incidence in southern China and parts of Southeast Asia. The current treatment methods are mainly radiotherapy and chemotherapy. However, they often have side effects and are not suitable for long-term exposure. Natural products have received more and more attention in cancer prevention and treatment because of their its high efficiency, low toxic side effects, and low toxicity. Natural products can serve as a viable alternative, and this study aimed to review the efficacy and mechanisms of natural products in the treatment of NPC by examining previous literature. Most natural products act by inhibiting cell proliferation, metastasis, inducing cell cycle arrest, and apoptosis. Although further research is needed to verify their effectiveness and safety, natural products can significantly improve the treatment of NPC.


Assuntos
Carcinoma , Neoplasias Nasofaríngeas , Humanos , Carcinoma Nasofaríngeo/tratamento farmacológico , Carcinoma/tratamento farmacológico , Carcinoma/metabolismo , Carcinoma/patologia , Neoplasias Nasofaríngeas/tratamento farmacológico , Neoplasias Nasofaríngeas/metabolismo , Neoplasias Nasofaríngeas/patologia , Proliferação de Células , Pontos de Checagem do Ciclo Celular , Linhagem Celular Tumoral
17.
Nat Commun ; 14(1): 7915, 2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-38036590

RESUMO

The initiation and progression of cancer are intricately linked to the tumor microenvironment (TME). Understanding the function of specific cancer-TME interactions poses a major challenge due in part to the complexity of the in vivo microenvironment. Here we predict cancer-TME interactions from single cell transcriptomic maps of both human colorectal cancers (CRCs) and mouse CRC models, ask how these interactions are altered in human tumor organoid (tumoroid) cultures, and functionally recapitulate human myeloid-carcinoma interactions in vitro. Tumoroid cultures suppress gene expression programs involved in inflammation and immune cell migration, providing a reductive platform for re-establishing carcinoma-immune cell interactions in vitro. Introduction of human monocyte-derived macrophages into tumoroid cultures instructs macrophages to acquire immunosuppressive and pro-tumorigenic gene expression programs similar to those observed in vivo. This includes hallmark induction of SPP1, encoding Osteopontin, an extracellular CD44 ligand with established oncogenic effects. Taken together, these findings offer a framework for understanding CRC-TME interactions and provide a reductionist tool for modeling specific aspects of these interactions.


Assuntos
Carcinoma , Neoplasias Colorretais , Animais , Camundongos , Humanos , Microambiente Tumoral/genética , Macrófagos/metabolismo , Carcinogênese/patologia , Neoplasias Colorretais/metabolismo , Carcinoma/metabolismo
18.
Nan Fang Yi Ke Da Xue Xue Bao ; 43(10): 1665-1673, 2023 Oct 20.
Artigo em Chinês | MEDLINE | ID: mdl-37933641

RESUMO

OBJECTIVE: To explore the radiosensitizing effect of icaritin on nasopharyngeal carcinoma (NPC) cells and the underlying mechanism. METHODS: MTT assay and clonal formation assay were used to evaluate the effect of icaritin on proliferation of human NPC HONE1 and HNE1 cells. The effects of icaritin treatment, γ-ray radiation, or both on production of reactive oxygen species (ROS), cell cycle distribution and apoptosis of the NPC cells were assessed using flow cytometry. The expressions of DNA damage markers γ-H2AX, cycle-related proteins CDC25C, p-CDC25C and cyclin B1, and ferroptosis markers ACSL4 and GXP4 were detected using Western blotting. A nude mouse model bearing subcutaneous HONE1 cell xenograft was used to observe the effect of icaritin and radiation on tumor growth. RESULTS: Icaritin dose-dependently inhibited the viability of the NPC cells and enhanced the inhibitory effect of radiation on cell proliferation. Flow cytometry and Western blotting showed that icaritin treatment prior to radiation significantly promoted ROS production and γ-H2AX expression in the NPC cells (P<0.001). Compared with radiation exposure alone, the combined treatment caused cell cycle arrest in G2 phase, down-regulated CDC25C and cyclin B1 expression, and up-regulated p-CDC25C expression in the cells (P<0.01), resulting also in increased cell apoptosis, enhanced expression of ferroptosis protein ACSL4 and lowered expression of GXP4 (P<0.001). In the tumor-bearing mice, icaritin treatment, compared with radiation alone, significantly reduced the tumor growth rate and decreased tumor weight (P<0.001). CONCLUSION: Icaritin can enhance radiosensitivity of NPC cells both in vitro and in nude mice possibly by enhancing ROS production to promote iron death of the cells.


Assuntos
Carcinoma , Neoplasias Nasofaríngeas , Humanos , Animais , Camundongos , Carcinoma Nasofaríngeo , Ciclina B1 , Carcinoma/metabolismo , Neoplasias Nasofaríngeas/genética , Camundongos Nus , Espécies Reativas de Oxigênio , Tolerância a Radiação , Proliferação de Células , Linhagem Celular Tumoral , Apoptose
19.
Biochim Biophys Acta Rev Cancer ; 1878(6): 189023, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37979733

RESUMO

The high prevalence of metabolic reprogramming in nasopharyngeal carcinoma (NPC) offers an abundance of potential therapeutic targets. This review delves into the distinct mechanisms underlying metabolic reprogramming in NPC, including enhanced glycolysis, nucleotide synthesis, and lipid metabolism. All of these changes are modulated by Epstein-Barr virus (EBV) infection, hypoxia, and tumor microenvironment. We highlight the role of metabolic reprogramming in the development of NPC resistance to standard therapies, which represents a challenging barrier in treating this malignancy. Furthermore, we dissect the state of the art in therapeutic strategies that target these metabolic changes, evaluating the successes and failures of clinical trials and the strategies to tackle resistance mechanisms. By providing a comprehensive overview of the current knowledge and future directions in this field, this review sets the stage for new therapeutic avenues in NPC.


Assuntos
Carcinoma , Infecções por Vírus Epstein-Barr , Neoplasias Nasofaríngeas , Humanos , Carcinoma Nasofaríngeo/metabolismo , Carcinoma Nasofaríngeo/patologia , Infecções por Vírus Epstein-Barr/complicações , Carcinoma/metabolismo , Neoplasias Nasofaríngeas/metabolismo , Neoplasias Nasofaríngeas/patologia , Herpesvirus Humano 4/metabolismo , Microambiente Tumoral
20.
Int J Mol Sci ; 24(20)2023 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-37894751

RESUMO

Insulin receptor substrate-2 (IRS-2), a substrate of the insulin-like growth factor (IGF)-I receptor, is highly expressed in the prostate cancer cell line, PC3. We recently demonstrated that extracellular signal-regulated kinase (Erk1/2), a kinase downstream of IGF signaling, is activated in PC3 cells under serum starvation, and this activation can be inhibited by IRS-2 knockdown. Here, we observed that adding an IGF-I-neutralizing antibody to the culture medium inhibited the activation of Erk1/2. Suppression of Erk1/2 in IRS-2 knockdown cells was restored by the addition of a PC3 serum-free conditioned medium. In contrast, the IRS-2-silenced PC3 conditioned medium could not restore Erk1/2 activation, suggesting that IRS-2 promotes the secretion of proteins that activate the IGF signaling pathway. Furthermore, gelatin zymography analysis of the conditioned medium showed that matrix metalloproteinase-9 (MMP-9) was secreted extracellularly in an IRS-2 dependent manner when PC3 was cultured under serum starvation conditions. Moreover, MMP-9 knockdown suppressed Erk1/2 activation, DNA synthesis, and migratory activity. The IRS-2 levels were positively correlated with Gleason grade in human prostate cancer tissues. These data suggest that highly expressed IRS-2 activates IGF signaling by enabling the secretion of MMP-9, which is associated with hyperproliferation and malignancy of prostate cancer cell line, PC3.


Assuntos
Carcinoma , Neoplasias da Próstata , Humanos , Masculino , Carcinoma/metabolismo , Linhagem Celular , Meios de Cultivo Condicionados/metabolismo , Proteínas Substratos do Receptor de Insulina/genética , Proteínas Substratos do Receptor de Insulina/metabolismo , Fator de Crescimento Insulin-Like I/metabolismo , Metaloproteinase 9 da Matriz/genética , Metaloproteinase 9 da Matriz/metabolismo , Células PC-3 , Fosfoproteínas/metabolismo , Fosforilação , Próstata/patologia , Neoplasias da Próstata/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...